

GEA Air Handling Units – Modular configuration

Solutions with maximum flexibility GEA CAIR*plus*[®] SX

Product Brochure

GEA Air Handling Units Optimized for any application

Project requirements never exactly repeat themselves: with its especially designed product ranges, GEA Air Treatment can satisfy all expectations. For some applications, only the exchange of air is required; for others, however, there are more sophisticated requirements with respect to temperature, humidity, and air purity. Modular units allow free selection of components and functions and can be matched to their requirements down to the smallest detail. Compact units are optimized to their applications, with high-efficiency energy recuperation. They are delivered ready for connection, with integrated control systems.

GEA CAIR*plus* SX

With modular configuration – and with virtually unlimited possibilities

When room air lies within the narrow range of optimal indoor comfort temperatures, we feel comfortable. This applies not only for home applications, but also for production, office, and sales rooms.

Indoor room climate is influenced by many factors: the number of persons in a room, the number of computers, the lighting, and many more. This is why central air handling is so important for closed rooms. But climate also plays an essential role in production processes. Good HVAC conditions must prevail, for example, in the food and beverage industry. In hospitals and in the pharmaceutical industry, hygiene furthermore plays a critical role.

GEA central air handling units implement heating, cooling, humidifying and dehumidifying, filtration, and cost-effective energy recuperation. And GEA Air Treatment is constantly working to improve the quality and engineering of these functions. One result here is the new generation of central air handling units: GEA CAIR*plus*.

For use both in new buildings and in the modernization of existing facilities, GEA CAIR*plus* allows optimal planning and design of central HVAC solutions. The various models can be flexibly selected and matched to any requirements, and are dimensioned by means of GEA planning software. At GEA Air Treatment, quality and innovative technology stand in the foreground of these efforts: ensured by constant inspection, further development, and maintenance of production processes at the state of the art.

The greatest share of the costs of a central air handling unit arises from its operating expenses spread over its entire service life – and not from the original acquisition price. As a result, GEA CAIR*plus* units can be economically outfitted with high-efficiency energy recuperation and with energy-saving drive systems. CAIR*plus* already now conforms to the EU directive that goes into effect in mid-2011 and that stipulates the use of electric motors from efficiency class IE2/EFF1. CAIR*plus* is furthermore certified according to Eurovent and the German Association of HVAC Manufacturers, which assures greater transparency and safety.

In addition, completely smooth inner surfaces and good access to all components guarantee high hygienic standards. GEA regularly monitors the currently valid official regulations and assures that they are being met by GEA CAIR*plus*.

Choice of model configurations

All model configurations are available for GEA CAIR*plus:* indoor and outdoor versions, vertical or horizontal installation – as well as configurations with units on top of each other, behind each other, or next to each other.

Simple installation and maintenance

- In addition to space for their installed components, GEA CAIR*plus* units also provide extra installation space for piping and cabling. Large service hatches additionally make it significantly easier to maintain and service the units.
- All hatch locks, threaded connections, and hinges are integrated into the unit frame. Even partition joints do not require any additional length of the units. As required, individual components can be simply installed on the installation site from the outside.
- The lifting lugs in the top profile section of the units make it simple and easy to transport them to the installation site (for units delivered up to 1,500 kg).

Eurovent and the German Association of HVAC Manufacturers Tested + certified = maximum safety

HVAC systems by GEA Air Treatment satisfy the most stringent of quality requirements and are subjected to periodic testing.

Measuring means acquisition of knowledge. And the customers get exactly what they expect. This is the motto of the Eurovent Certification Program. As a result, documentation and software are subjected to strict tests.

Directives EN 13053 and EN 1886 stipulate the criteria to be applied in these tests. Independent testing institutions periodically inspect these characteristics in accordance with Eurovent certification stipulations.

Modelbox Test – enclosure properties in accordance with EN 1886 Enclosures are provided to an independent testing institution every 6 years, which tests these enclosures in accordance with the following properties.

- Mechanical stability (D1 ... D3)
- Enclosure leakage (L1 ... L3)
- Filter-bypass leakage (G1 ... F9)
- Thermal insulation (T1 ... T5)
- Thermal-bridge factor (TB1 ... TB5)
- Sound insulation of the enclosure.

Real Unit Test – software performance characteristics as per EN 13053

In these tests, an independent expert selects one unit type every 3 years at the manufacturer's plant. This type is then exactly manufactured as a specimen copy, measured by a testing institute, and compared to the software data. The manufacturer's software is then certified only if all the performance characteristics of the copy are successfully verified. The following performance data are tested:

- Mechanical stability
- Enclosure leakage
- Filter-bypass leakage
- Air flow rate
- Available static pressure
- Power consumption
- Noise emitted from the enclosure
- Noise transmitted by the air flow
- Heating capacity
- Cooing capacity
- Energy recuperation efficiency
- Pressure loss on the water side

Inspection of the production plants

Once every year, an expert visits the production plant of the certified manufacturer. This inspection checks conformity of the manufactured units with the design software.

Tested efficiency - certification of energy characteristics

Consumption by HVAC systems represents a major share of the energy used by buildings. To reduce this consumption and, in turn, CO₂ emissions, measures are being taken in many countries to increase the efficiency of HVAC systems. But how it is possible to objectively assess energy efficiency on the basis of simple characteristic values? Numerous factors influence the energy consumption of a central air-handling unit:

- The air speed in the unit
- The power consumption of the motors
- The efficiency and the pressure drop of the energy recuperation
- Climate conditions at the installation site.

The Eurovent energy label

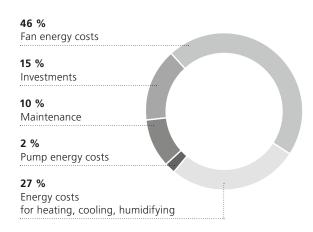
Analysis of these factors is summarized in Eurovent efficiency classes A to <E, with A the greatest efficiency. The basis of evaluation is EN 13053, which assigns various classes to the influencing factors of air speed, efficiency of air movement, energyrecuperation efficiency, and pressure drop of energy recuperation. In addition, the Eurovent system considers the climate conditions at the site. In cold climate regions, the use of an efficient energy-recuperation system has a higher rating value than in warm regions. The design temperature for winter operations takes this into account in calculations. Eurovent uses the special labels AG to <EG to designate systems that do not handle outdoor air. Evaluation of such systems considers only air speed and efficiency of air movement. There is a trade-off between the individual evaluation classes: for example, excessive air speed can be set off by energy recuperation with greater efficiency.

German Association of HVAC Manufacturers

In addition, efficiency classes A+, A, and B are awarded as per the stipulations of this association. Equipment that fails to satisfy these requirements receives no classification. Criteria of one class are considered to be satisfied only if all conditions are observed.

Calculation of the Eurovent energy-efficiency classes

Class		A/A ⊊	B/B⊊	C/C ⊊	D/D⊊	E/E⊊	<e <e<="" th=""></e>
Air spee V _{class}	d m/s	1.8	2.0	2,.2	2.5	2.8	_
Energy r cuperatio ղ _{class}		75	67	57	47	37	_
Δp_{class}	Pa	280	230	170	125	100	_
Power co sumption of the fa	n						
f _{class-Pref}		0.90	0.95	1.00	1,.06	1.12	-



Eurovent assigns energy efficiency ratings from A to <E (label A shows the greatest efficiency)

The German Association of HVAC Manufacturers awards efficiency labels A+, A, and B. Systems that do not satisfy all requirements do not receive a label.

Life-cycle cost calculation Consideration of all costs in advance

Example of an office building

Calculations performed by GEA L*plus* software (see page 7) are based on Eurovent recommendations for determination of life-cycle costs, and likewise take into account important standards and regulatory frameworks (such as DIN V18599-3 and VDI 2067-1).

Energy labels provide the basis of assessing the energy quality of an HVAC unit by a simple rating number. For exact statements on the expected operating costs, however, it is necessary to calculate the life-cycle costs (LCC).

LCC Guidelines for Air Handling Units provide the basis for this calculation. These guidelines are provided in accordance with DIN V18599-3 and VDI 2067-1. Calculation in turn takes place in accordance with climate conditions at the equipment site, as well as with operating times. Building behavior is simulated by scenarios that select the supply and exhaust-air temperatures as a function of outdoor-air conditions. Further influencing variables such as energy prices, investment costs, and costs for maintenance and servicing round out the basis for calculation.

Several equipment configurations can be calculated in parallel and can be compared to each other. The result is a presentation that – in addition to costs of the individual energy media – also indicates the total costs accruing throughout the life cycle being considered.

Life Cycle Costs

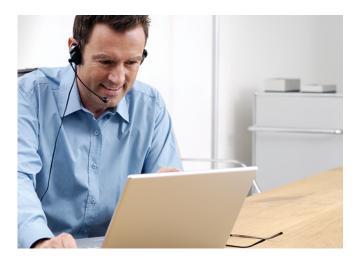
Investment costs

Planning Initial acquisition Installation

Energy costs

Electric power Heating and cooling Water

Maint<u>enance</u>


Cleaning and maintenance Repair

Disposal

Disassembly Recycling and disposal

GEA L*plus* design software

For fast and reliable engineering design

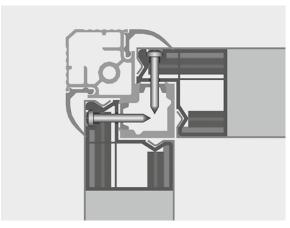
GEA CAIR*plus* central air handling units are characterized by their great diversity of models, which provide a tailored solution for each requirement being presented, and for every building situation. Each unit is individually designed with the GEA *Lplus* design software.

Time is money: and this especially applies to the project engineering of HVAC facilities. We have developed the GEA L*plus* design software to make your selection and configuration as fast and as simple as possible for a precision climate-control system that is optimal for your needs.

GEA CAIR*plus* precision climate-control systems have the advantage that all products can be designed to meet individual requirements. The GEA L*plus* design software helps you to implement your desired system at the turn of a hand. The system makes configuration proposals in accordance with your entry of information. L*plus* immediately calculates and outputs unit subdivisions, configuration of the modules, as well as dimensions and weights. Believe us: there is no way for faster and more reliable planning. And you will gain valuable time for other tasks.

Benefits of using GEA Lplus design software

- Individual configuration proposals
- Determination and display of unit sub-divisions, modular configurations, dimensions, and weights
- Calculation of life-cycle costs (LCC)
- Simple program handling
- Fast, reliable selections and planning
- Valuable time gain for other tasks
- Indication of energy-efficiency classes (Eurovent and German Association of HVAC Manufacturers)
- Regular monitoring by Eurovent of the validity of the calculation procedure



GEA L*plus* design software covers all products by GEA Air Treatment. The free full version can be downloaded under www.gea-airtreatment.com under the menu link Media/ Download/L*plus*. Or, it can be ordered from us.

Assurance of high hygiene standards Hygiene-tested HVAC systems

Hygiene connection frame

The enclosures of GEA CAIR*plus* units are completely smooth on the inside, which makes them easy to keep clean. This assures optimal conditions for hygienic operations in accordance with VDI 6022, VDI 3803, and DIN 1946 Part 4.

In the design and structural engineering of GEA CAIR*plus* central air handling systems, great emphasis has been placed on equipment design that assures conformity with high hygiene standards.

GEA CAIR*plus* units are entirely smooth on the inside. There are no edges or threaded connections to restrict complete cleaning of the unit.

For stricter hygiene standards – for example, in buildings and rooms of public health institutions – additional requirements must be satisfied as described in DIN 1946, Part 4. GEA CAIR*plus* central air handling systems satisfy these requirements as well.

Hygiene requirements applicable to HVAC equipment are stipulated in the following standards and guidelines:

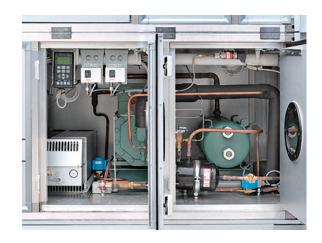
- VDI 6022 Sheet 1
- Hygiene requirements placed on HVAC systems and units EN 1886
- Mechanical properties and measurement techniques
- EN 13053 Performance indicators
- DIN EN 13779
 General fundamentals and requirements
- DIN 1946 Part 4
 HVAC systems in hospitals

Everything from one source Integrated cooling

GEA CAIR*plus* central air handling units with integrated cooling systems are virtually entirely ready for connection, and their components have been optimally coordinated with each other. They have proved highly attractive as a result of their integrated control technology and highly efficient energy recuperation.

DX direct evaporator technology with R134a refrigerant achieves high levels of reliability and long service life. These systems are also absolutely reliable in service, even under conditions of high outdoor temperatures. Their output can be continuously matched to momentary cooling requirements. For minimized energy consumption, GEA also offers the option here of adiabatic evaporative cooling. All cooling components and the control system have been integrated in the unit.

The cooling circulation system


- R134a as refrigerant
- Heat exchanger as direct evaporator and refrigerant condenser
- Semi-hermetic compressor (reciprocating piston compressor up to 100 kW cooling capacity, with screw compressor for greater requirements)
- Output control by means of cylinder shut-off and frequency converter
- Control range from 30 to 100 % of the maximum cooling capacity (optional: 10 to 100 %)

The refrigerant R134a

- Good thermal and energy characteristics
- No temperature glide
- Low condensation pressure; high condensation temperatures > 60°C are possible
- Reliable heat dissipation as a result of great temperature range
- Quiet operation; great operational reliability
- Low energy consumption
- Low global warming potential (GWP)
- No ozone depletion potential

The control system

- Control cabinet integrated into the unit and completely wired
- Control by the GEA Matrix 4700 system
- Optional bus interface
- As alternative, available in an external control cabinet

Overview of the integrated cooling technology implemented here

- Great number and variety of application areas: e.g., in offices, supermarkets, and department stores
- Small footprint
- Everything from one supplier
- No external piping
- Little engineering effort
- Simple installation
- Great energy efficiency, since the system is always connected to energy recuperation
- For air flow from 3,000 to 50,000 m³/h
- For indoor and outdoor installation
- Optional adiabatic exhaust-air humidification
- Control by the GEA MATRIX 4700
- Project-specific solutions possible

Safety in explosion-endangered areas Air handling conformity with ATEX

Explosion groups

Classification of the amount of energy required to ignite substancedependent quantities and volumes:

■ IIA = a great amount of energy

- IIB = a moderate amount of energy
- IIC = a small amount of energy

With its products for numerous applications, GEA Air Treatment offers the necessary safety for explosion-endangered areas. GEA central air handling units represent a significant element here. Their many and various functions provide the basis of fully functional HVAC systems for application in explosion-endangered zones.

An atmosphere can be explosive as a result of local conditions and/or operational circumstances. Such specific conditions involve mixtures of air and combustible gas, vapor, mist, or dust. For an explosion of these substances, atmospheric conditions are necessary under which the process of combustion – after successful ignition – spreads to the entire uncombusted mixture. Explosion-endangered areas can develop where explosive gases, mist, vapor, or dust exist or could form. Areas in which dangerous and explosive atmospheres can occur are classified into zones, in accordance with the probability of development of such an explosive atmosphere.

Classification into zones				
Danger of explosion	Example	Gas	Dust	Required category
An explosive atmosphere prevails continuously, frequently, or for long periods	In the inside of containers	Zone 0	Zone 20	1
An explosive atmosphere occasionally prevails	The area around filling and emptying openings	Zone 1	Zone 21	2
An explosive atmosphere rarely prevails, and then only for short periods of time	Areas around Zones 1 / 21	Zone 2	Zone 22	3

Breakdown into temperature classes							
Temperature class		T1	Т2	Т3	T4	Т5	Т6
Ignition temperature of the combustible substances greater than	°C	450	300	200	135	100	85
Maximum permissible surface temperature of equipment	°C	450	300	200	135	100	85

All operators of facilities with the possibility of formation of explosive atmospheres are required to classify their plants by zone: either themselves, or with the aid of a consulting company, in accordance with ATEX 137 (Guideline 1999/92/EG) and its national laws and ordnances.

The operator must also observe the fundamental measures for primary protection against explosions with "avoidance of explosive atmospheres": e.g., by means of dilution, limiting, substitution of substances, or the like.

A ventilation or climate-control unit as individual component cannot alone guarantee complete and comprehensive explosion protection, since the protective concept must cover the entire facility. The overall responsibility therefore finally lies with the user or the plant builder.

ATEX conformity certification of GEA Air Treatment

Guideline 94/9/EG – better known as ATEX 95 – contains the stipulations for "equipment and protective systems for application in explosion-endangered areas in conformity with the relevant stipulations." GEA Air Treatment delivers GEA CAIR*plus* for use in explosion-endangered areas in accordance and conformity with ATEX Guideline 94/9/EG (ATEX 95).

ATEX Conformity Certification has been provided for the following applications:

ATEX Conformity Certificatio for GEA Air Treatment	n
Explosive gas applications	Explosive dust applications
II 3 G IIB T3 Inside	II 3 D T200 °C Inside
II 3 G IIB T4 Inside	II 2 D T200 °C Inside
II 2 G IIB T3	
II 2 G IIB T4	

Equipment classification in accordance with ATEX Example: Ex II 3 G IIB T4 Inside Equipment

II

Equipment Group (I = mining; II = all other areas of application)

- 3
 Category (3 for Zones 2, 22; 2 for Zones 1, 2, 21, 22;
- 1 for all zones) **G**

G = gas; D = dust

- IIB Explosion Group
- T4

Temperature class

Inside

Inside the equipment (if no indication given, then for inside and outside)

The control system: efficient and intelligent The right turn for the right climate

GEA MATRIX 4700 Compact System Control

Control system with numerous monitoring possibilities:

- Differential pressure measurement for monitoring of the supply and exhaust-air filter
- Position measurement of the outdoor-air louver to avoid frost damage
- Temperature measurement for avoiding frost, with additional frost-protection thermostat to provide switch-off
- Icing temperature measurement to protect the direct evaporator
- Monitoring of the safety chain for external compressor-condenser units
- Plausibility check for detection of sensor faults
- Monitoring of malfunction reports from circulation pumps, frequency converters, and energy-recuperation systems

GEA DDC cabinet for open- and closed-loop control

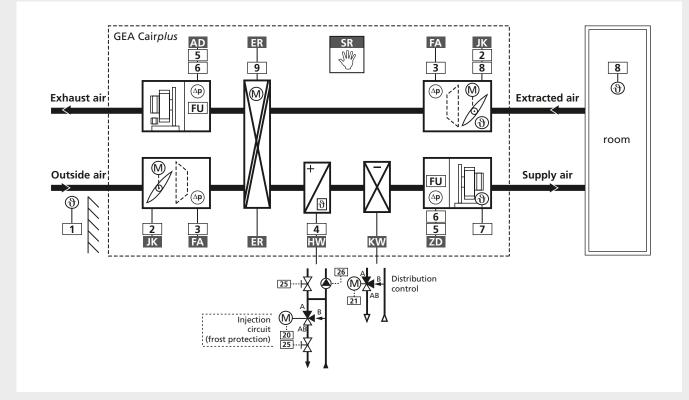
With both GEA MATRIX Compact System Control, or with GEA DDC System Control: the user enjoys many functionalities for operation and control of the GEA CAIR*plus*.

The user can optimally match the functions of the central air handling unit to the respective application case: either by means of the MATRIX operator-control unit, or by the GEA MATRIX.PC startup software. The system acquires a great number of measured values and continuously monitors them, to assure safe and reliable operation of the GEA CAIR*plus*, with a minimum of difficulties. If one of the monitoring systems responds, this is reported in plain text by the operator-control unit, and in parallel via the malfunction-report output and/or via the interface to the building-services management system.

Communicative and understandable – the operator-control level

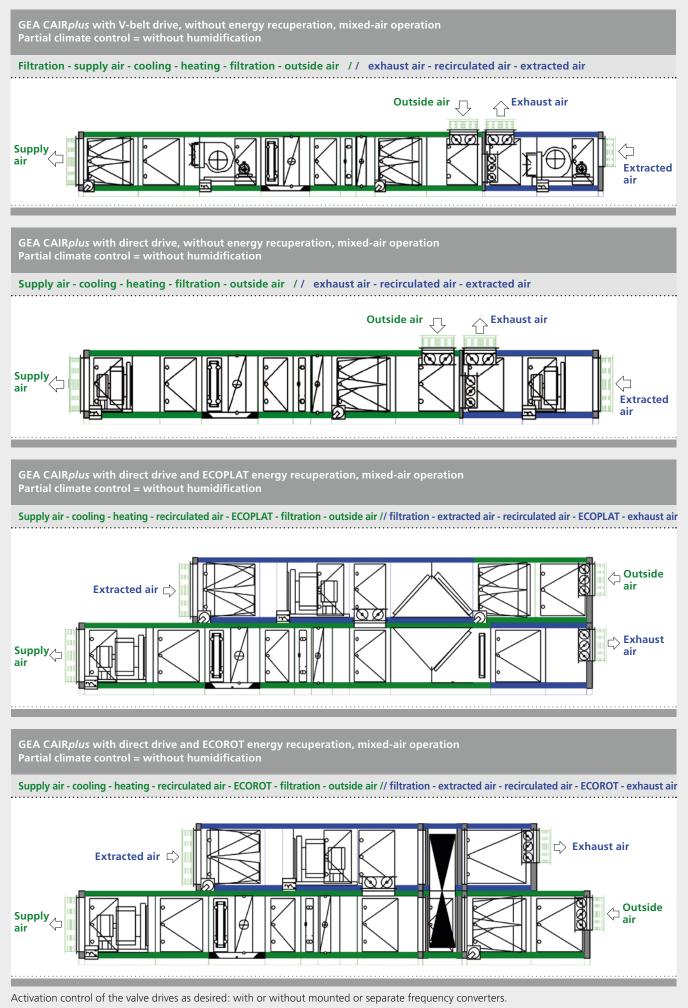
The MATRIX operator-control unit has a graphics-capable display that is operated with a menu structure analogous to that of a mobile telephone. As a result, setpoint values and switching times can be very easily entered, and current actual values and instruction messages can be simply read off. If a second operator-control unit is desired (e.g., for advance, simple entry of setpoint temperatures), this can take place via the existing GEA MA-TRIX.Net bus system.

Fast initial startup of the system

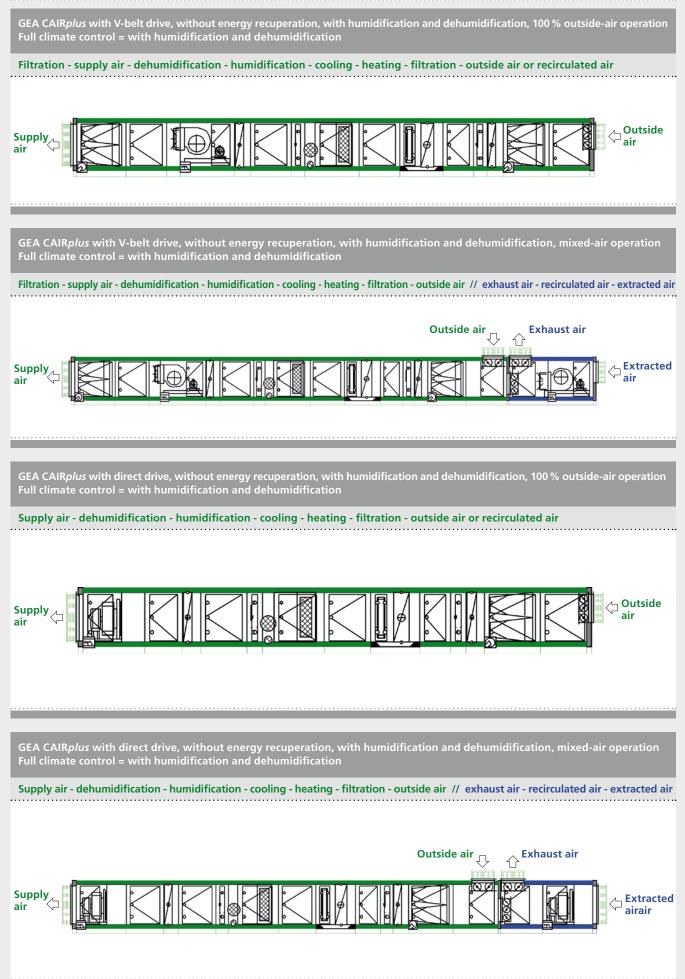

Before being delivered, the components of the GEA MATRIX Compact System Control are completely tested for their functions, with advance setting of as many functionalities as possible.

GEA MATRIX 4700 Compact System Control or GEA DDC System Control

The GEA MATRIX Compact System Control allows open- and closed-loop control of all components of GEA CAIR*plus* central air handling systems for partial climate control. An exception here is compete climate control via a humidifying and dehumidifying section. For this purpose, GEA offers a DDC system control with no restrictions in functionalities. It is configured with customizing to satisfy all details of the building-owner's requirement catalog.


MATRIX 4700 – maximum motor ratings

- with frequency converters: 2 x 15.0 kW
- without frequency converters: 2 x 7.5 kW



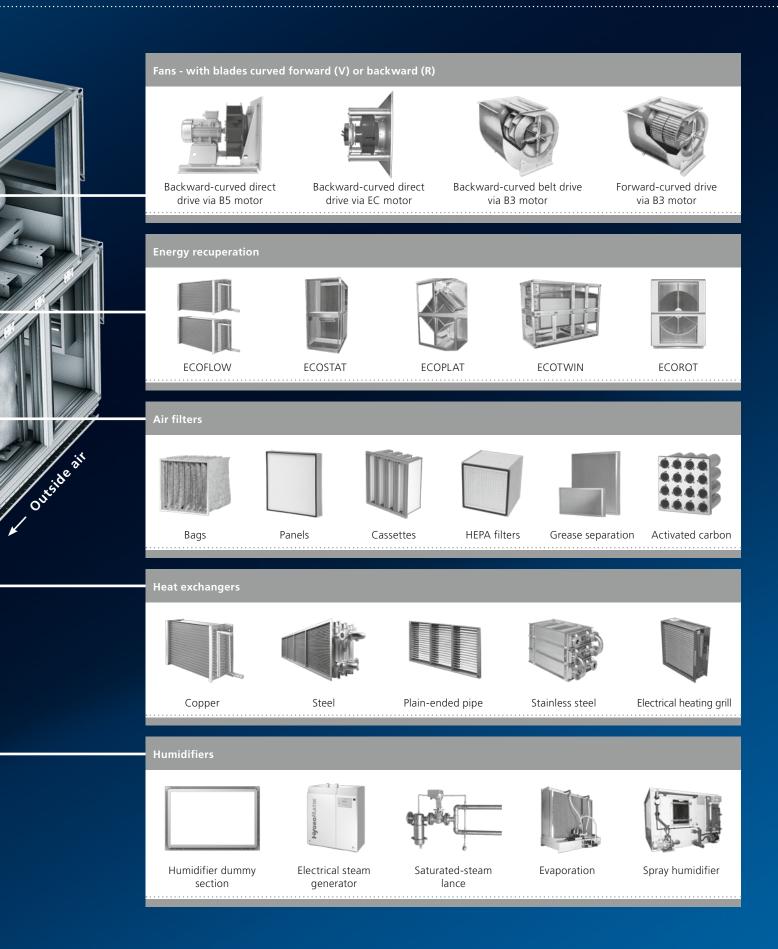
Components and functions	GEA scope of de	livery or activation control
ZD Supply-air fan with frequency converter FU	installed	Direct drive 3~400 Volt / 50 Hz
AD Air-extraction fan with frequency converter FU	installed	Direct drive 3~400 Volt / 50 Hz
JK Shutter flaps outside air / extracted air	installed	Counter-action shutters with gear drive
FA Filter for outside air / extracted air	installed	Outside air F7 / Extracted air F5
ER Energy recovery	ECOROT	GEA rotation heat exchanger
HW Heating (low-pressure hot water, LPHW)	no steam	Heating with steam upon request
KW Cooling (pumped chilled water, PCW)	No refrigerant	Cooling with refrigerant upon request
SR Compact open- and closed-loop control cabinet	t 🌒 installed	Completely wired for operation
1 Outside sensor	separate	GEA NTC sensor with IP54 housing
2 Servomotors for shutter flaps (outside air/extracted air)	installed	GEA motor drive 230 Volt
3 Pressure-drop switch (outside air/extracted air)	installed	Lower response sensitivity = 40 Pa
4 Frost-protection thermostat	installed	GEA thermostat with change-over contact
5 Pressure sensors for air-volume flow control	installed	Volume or pressure or signal, external 0 10 Volt
6 Frequency converter (supply air/extracted air)	installed	For speed control of fan motor
7 Supply-air minimal-limitation sensor	installed	GEA NTC installed sensor
8 Extracted-air sensor, installed, &/or sep. room sensor	installed / separate	e GEA NTC installed sensor or with IP21 housing
9 Drive motor for rotation heat exchanger	installed	For speed control of rotor
20 Servomotor, 3-way mixing valve (LPHW heating)	separate	GEA motor drive 230 Volt
21 Servomotor 3-way distribution valve (PCW cooling)	separate	GEA motor drive 230 Volt
3-way valves	Hydraulics	
A Return flow from heat exchanger	Partial medium vo	lume Medium: water or brine
B Bypass from supply line	Partial medium vo	lume Medium: water or brine
AB Return flow line to energy producer	Total medium volu	ume Medium: water or brine
25 Throttle valve (mechanical)	from customer	For customer-side hydraulic adjustment
26 Secondary pump for heating cycle	• from customer	GEA activation control ON / OFF

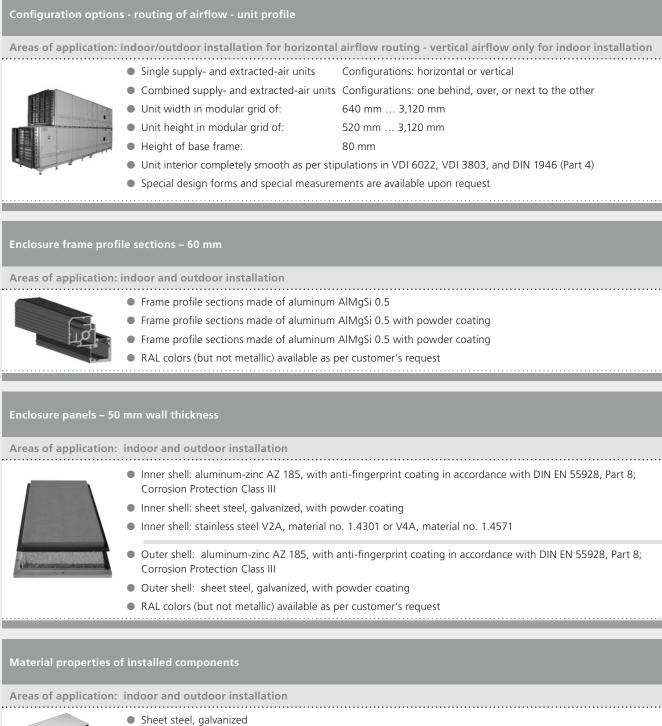
Examples of application possibilities GEA MATRIX 4700 compact closed-loop system control

PR-2009-0038-GB • Subject to modification • K4-10/2012

Activation control of the valve drives as desired: with or without mounted or separate frequency converters. PR-2009-0038-GB • Subject to modification • K4-10/2012

GEA CAIR*plus* SX


Unit components


Supply air

Unit components for 100 % outside-air operation, with 90 % energy recuperation via the rotary heat exchanger ECOROT.

Extracted air

Exhaustair

• Sheet steel, galvanized, with powder coating or with higher-quality material properties for greater corrosion protection

Types of application

Areas of application: indoor and outdoor installation

- Series-production version in accordance with VDI 6022 and VDI 3803
- Hygiene version in accordance with DIN 1946, Part 4
- EEx version for greater safety in accordance with ATEX Guideline 94/9EG (ATEX 95)
- Unit frame with lifting lugs for up to 1,500 kg, or transport gear for unit base frame for greater loads
- Special version upon request

GEA CAIR*plus* SX

Enclosure

Properties as per prEN 1886 Enclosure wall=50 mm Inside and outside installation		ut additic	onal thei	mal sep	aration				
	Test criterion	Ur	nit	Pres	sure	Limit	value	Cla	ass
	 Mechanical stability 	mm	n/m	-	-	1	0	D	2
	• Leakage	l/s/	m²	-400 Pa		0.15		L1	
	• Leakage	l/s/	m²	+70) Pa	0.2	22	L	.1
	 Filter bypass leakage 	9	6	+40	0 Pa	0.	5	F	9
	• Thermal insulation	W/n	n²/K	-	-	1.0 < U	< = 1.4	Т	3
	 Thermal bridging factor 	-	-	-	-	0.45 < = k	b < = 0.6	0 TI	33
	• Frequency range	Hz	125	250	500	1000	2000	4000	8000
	Acoustic insulation	dB	17	21	27	30	31	31	40

.....

Test criterion Mechanical state Leakage 	oility	Unit	Pr	essure	Limit			
	oility					alue	Clas	55
Leakage		mm/m		_	10)	D2	2
		I/s/m ²	_	400 Pa	0.1	5	L1	
Leakage		I/s/m ²	+	700 Pa	0.2	2	L1	
Filter bypass lea	kage	%	+	400 Pa	0.5	5	F9)
Thermal insulati	ion	W/m²/K		-	1.0 < U <	< = 1.4	Т3	}
Thermal bridgin	ig factor	-		- (0.60 < = kk	0 < = 0.75	5 TB2	2
Intermediate profile section	ige H	lz 1	25 250	500	1000	2000	4000	8000
Acoustic insulat	ion d	B	6 19	26	29	31	32	42

Properties as per prEN 1886 Enclosure wall=50 mm Inside and outside installati	CAIR <i>plus</i> SX-T With comp	plete thermal sepa	ration of the frai	ne profile section	s and the panels
	Test criterion	Unit	Pressure	Limit value	Class
	 Mechanical stability 	mm/m	-	10	D2
	Leakage	I/s/m ²	-400 Pa	0.44	L1
	Leakage	I/s/m ²	+700 Pa	0.63	L1
	 Filter bypass leakage 	%	+400 Pa	0.5	F9
	Thermal insulation	W/m²/K	_	0.5 < U < = 1.0	Τ2
	 Thermal bridging factor 	_	-	0.60 < = kb < = 0.7	0 TB2
	• Frequency range	Hz 125	250 500	1000 2000	4000 8000
	Acoustic insulation	dB 15	27 29	31 31	34 40

Fans

GEA CAIR*plus* SX

	e radial fan for V-belt drive take for standard IEC motors, model type B3	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external		
Range of applicat	tion: 1,000 125,000 m³/h	SFP 1.15 kW/m³/s		
	• Fan blades curved forward	Impeller diameter	mm	500
	• Impeller size 180 1,250	• Fan efficiency	%	66.4
	Impeller in spiral enclosure, sheet steel, galvanized	Rating at the shaft:	kW	2.5
	 Output control by means of motor speeds or 	 Operating point, P electrical 	kW	3.4
	frequency converter	 Rating of motor at 1,500 rpm 	kW	3.0
		• Sound power level on the air-discharge side	dB(A)	86
	Range of operation: -20 °C + 80 °C	Sound power level on the air-intake side	dB(A)	89
	• Range of operation: -20 °C + 80 °C e radial fan for V-belt drive take for standard IEC motors, model type B3	• Sound power level on the air-intake side Technical data for comparison Air flow in 10,000 m ³ /h/500 Pa external	dB(A)	89
Impeller 2-side in	e radial fan for V-belt drive	Technical data for comparison	dB(A)	89
Impeller 2-side in	e radial fan for V-belt drive take for standard IEC motors, model type B3	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external	dB(A)	89
Impeller 2-side in	e radial fan for V-belt drive take for standard IEC motors, model type B3 tion: 1,000 125,000 m³/h	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external SFP 0.95 kW/m³/s		
Impeller 2-side in	e radial fan for V-belt drive take for standard IEC motors, model type B3 tion: 1,000 125,000 m³/h • Fan blades curved backward	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external SFP 0.95 kW/m³/s • Impeller diameter	mm	500
Impeller 2-side in	e radial fan for V-belt drive take for standard IEC motors, model type B3 tion: 1,000 125,000 m³/h • Fan blades curved backward • Impeller size 180 1,250	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external SFP 0.95 kW/m³/s Impeller diameter Fan efficiency	mm %	500 81.0
Impeller 2-side in	e radial fan for V-belt drive take for standard IEC motors, model type B3 tion: 1,000 125,000 m³/h • Fan blades curved backward • Impeller size 180 1,250 • Impeller in spiral enclosure, sheet steel, galvanized	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external SFP 0.95 kW/m³/s Impeller diameter Fan efficiency Rating at the shaft	mm % kW	500 81.0 2.0

.....

Range of operation: -20 °C ... + 80 °C

	n-performance radial fan for direct drive ke with directly flange-connected standard IEC motors	Technical data for comparison Air flow in 10,000 m³/h/500 Pa external		
Range of application	on: 1,000 85,000 m³/h	SFP 0.92 kW/m³/s		
	• Fan blades curved backward	Impeller diameter	mm	560
	Impeller size 225 1,250	• Fan efficiency	%	78.5
	Impeller open-running, without spiral enclosure	 Rating at the shaft 	kW	2.0
	Motors as per efficiency class Eff 1 or Eff 2	 Operating point, P electrical 	kW	2.5
-	 Output control by means of frequency converter 	 Motor rating 	kW	2.2
		• Sound power level on the air-discharge side	e dB(A)	89
	• Range of operation: -20 °C + 40 °C	• Sound power level on the air-intake side	dB(A)	87

Impeller 1-side int	h-performance radial fan for direct drive take ge-connected standard IEC motors		chnical data for comparison r flow in 10,000 m³/h/500 Pa external		
Range of applicat	ion: 1,000 12,000 m³/h	SF	P 0.92 kW/m³/s		
	 Fan blades curved backward 		Impeller diameter:	mm	560
	Impeller size: 280 630		Fan efficiency	%	76.1
	 Impeller open-running, without spiral enclosure 		Rating at the shaft:	kW	1.9
	 Great efficiency as a result of EC external-rotor motors 		Operating point, P electrical	kW	2.4
	 Output control by means of frequency converter 		Motor rating:	kW	2.2
			Sound power level on the air-discharge side	dB(A)	89
	Range of operation: -20 + 40 °C		Sound power level on the air-intake side	dB(A)	87

• Sound power level on the air-intake side dB(A) 84

GEA CAIRplu	us SX					Air filters
Coarse- and fine- Filter classes G4 .		s as bag filters ance with DIN EN 779				
		se- and fine-particle du	st		Length of bag F	ilter area per m²
	• G4	Synthetic fiber		Am 90 %	360 mm	5.0 m ²
THESE	• F5	Synthetic fiber	Em 47 %	Am 98 %	534 mm	10.0 m ²
	• F5	Synthetic fiber	Em 47 %	Am 98 %	360 mm	11.0 m ²
	• F7	Synthetic fiber	Em 85 %	Am 99 %	534 mm	16.0 m ²
	• F7	Synthetic fiber	Em 85 %	Am 99 %	380 mm	15.0 m ²
	• F9	Micro-glass filter	Em 95 %	Am 99 %	600 mm	21.0 m ²
Coarse- and fine- Filter classes G4 .		s as panel filters ance with DIN EN 779				
Area of use: sepa	aration of coar	se- and fine-particle du	st		Installation depth F	ilter area per m²
	• G4	Polypropylene	Em 50 %	Am 96 %	96 mm	22.1 m ²
	• F5	Polypropylene	Em 50 %	Am 96 %	96 mm	22.1 m ²
	• F7	Polypropylene	Em 88 %	Am 99 %	96 mm	22.1 m ²
	• F9	Polypropylene	Em 88 %	Am 99 %	96 mm	22.1 m ²
Fine-particle filte Filter classes F6 .		filters ance with DIN EN 779				
		-particle dust with a mir	nimum of spa	ce requirements	Installation depth F	ilter area per m²
1950cc	• F6	Micro-fiberglass fleed	 e Fm 73 %	Am 98 %		34.0 m ²
	• F7	Micro-fiberglass fleed		Am 99 %	298 mm	34.0 m ²
La	• F9	Micro-fiberglass fleeo		Am 99 %	298 mm	38.0 m ²
HEPA filters with Filter class H13 in		groove and seal-seat te vith DIN EN 1882	est pipe in acc	ordance with DIN	1946, Part 4	
Area of use: sepa	aration of micr	o-fine particles in strict	hygiene area	S	Installation depth F	ilter area per m²
	• H13	Micro-fiberglass fleec	e	Am 99.95 %	292 mm	42.3 m ²
Grease filters as Filter class G3 in		th DIN EN 779				
Area of use: sepa	aration of grea	se (but not oils)			Installation depth F	ilter area per m²
	• G3	Aluminum wire mesh		Am 87 %	48 mm	0.77 m²
Activated-carbor	n filters as cart	ridge filters with bayon	et fitting			

Area of use: separation of gaseous odors and pollutants Installation de Installation depth Filter area per m² • Activated-carbon cartridges, with 16 cartridges per 1/1 cell 64.0 l 450 mm

Em = efficiency, Am = degree of separation

Area of application: pumped warm water (PWW), pumped hot water (PHW), pumped cold water (PCW), or refrigerant (R)

• Core copper pipe with attached aluminum, strip-coated aluminum, or copper fins

- Frame as chosen: galvanized sheet steel, aluminum, copper, or stainless steel
- Direct evaporator with intake manifold and refrigerant distributor made of copper

• Fin interval optimized in accordance with performance requirements: 1.8 ... 4.0 mm

- Optional: heat exchanger, complete, dip-coated, for enhanced corrosion protection
- Maximum operating pressure: 16 bar; temperature of medium: 110 °C
- Special versions available as requested

Finned tube heat exchanger – Series FE and FV Materials: galvanized steel (FE) / stainless steel (FV)

Area of application: pumped warm water (PWW), pumped hot water (PHW), saturated steam (SD), thermo-oil, and pumped cold water (PCW)

- Core pipe with fins galvanized together in dip bath
- Fin interval optimized in accordance with performance requirements: 2.1 ... 6.0 mm
- Frame as chosen: galvanized sheet steel or stainless steel
- Steam heat exchanger with vertically configured core pipes
- Optional: Stainless-steel heat exchanger (FV), material no. 1.4301 or 1.4371
- Maximum operating pressure: 16 bar; temperature of medium: 110 °C
- Special high-pressure version available: 25 bar, with German TÜV certification

Smooth-pipe heat exchanger – Series SD000 – Series FE000 – Series FV000 Materials: copper / steel / stainless steel

Area of application: unfiltered air flow, filter icing protection, filter bacterial protection, low outputs

• Properties the same as described for Series SD, FE, or FV, but here without fins

- As icing protection in front of outside-air filters. By heating = reduction in relative humidity
 As bacterial protection in front of the outside-air filter. By heating = reduction in relative humidity
- Here, also see VDE 6022, Sheet 1, and DIN 1946, Part 4
- For after-heating with high temperatures of medium, and for low outputs
- Recommended maximum temperature increase: 3 K
- Maximum operational pressure: 16 bar; temperature of medium: 110°C

Electrical heat exchanger – electrical frost-protection heating – gas-fired heater

Area of application: electrical or gas-driven heating systems

With safety temperature limiter and monitor as per VDE/DIN 57100, VDI 3803

Electrical heat exchanger with a maximum surface temperature of 100 °C at the heating grids

• Electrical frost-protecting heating as heating for idle equipment, installed in equipment compartments

For protection of frost-sensitive installed elements in weatherproof enclosures

Directly natural-gas-fired stainless-steel heat exchanger

Electrical heat exchanger

GEA CAIRplus SX

Energy recuperation

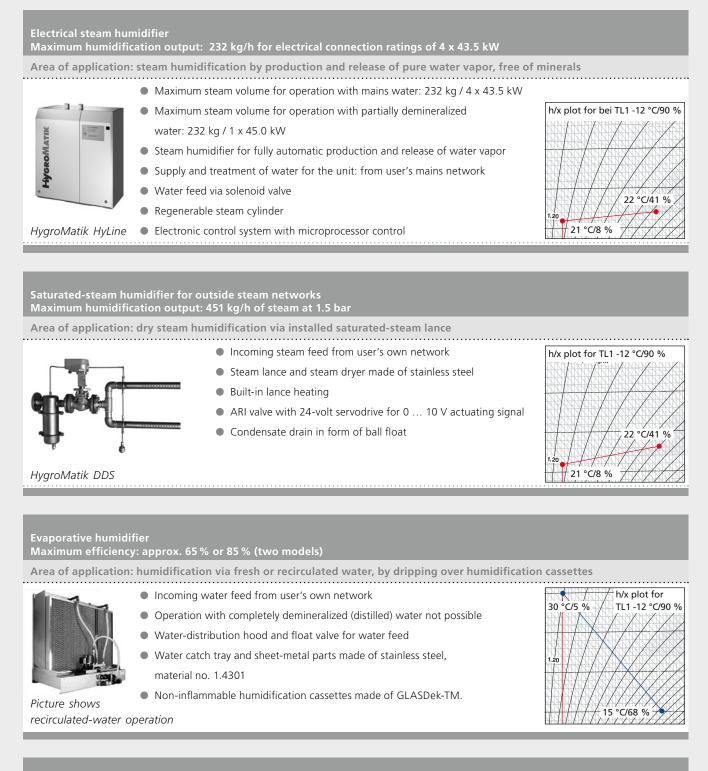
ECOFLOW – finned-tube heat exchanger, Series DD, as combined circulation system (KVS) Materials: copper / aluminum								
Area of application: operation of separately installed supply/extracted-air units – energy transport via brine circulation								
	 Properties as for Series SD heat exchangers 100 % separation of supply and extracted air flows Optional: Series FE steel heat exchanger 	 Approximate maximum efficiency 	70 %					
	• A frost-protection control system is necessary to prevent frosting of the extracted-air heat exchanger; optional via the GEA hydraulic module	Danger of frosting in the extracted-air heat exchangerCooling recuperationMoisture recovery	yes yes no					

ECOSTAT – finned-tube heat exchanger, Series SD, as heatpipe unit, with or without integrated bypass louver Materials: copper / aluminum

Area of application: operation of supply/extracted-air units installed one over the other, or next to each other - energy exchange via aluminum plates

	•	Properties as for Series SD heat exchangers	Approximate maximum efficiency	60 %
-		Fin interval: 2.1 2.5 mm		
-		Core copper pipe filled with R134a refrigerant	Danger of frosting in the extracted-air heat exchange	r no
ļ		Autonomous operation, without auxiliary power,	Cooling recuperation	no
		by evaporation of the refrigerant in the core pipes	Moisture recovery	no

ECOPLAT/ECOTWIN – aluminum-plate heat exchanger with or without integrated bypass louver Material: aluminum spacers


Area of application: operation of supply/extracted-air units installed one over the other, or next to each other - energy exchange via aluminum plates

	•	Standard plate heat exchanger	ECOPLAT	•	Approx. max. efficiency for ECOPLAT	70 %
		Plate interval 3.0 12.0 mm			Approx. max. efficiency for ECOTWIN	80 %
		Optional: high-performance class				
		Double-plate heat exchanger	ECOTWIN			
		Plate interval 6.0 12.0 mm			Frosting danger in extracted-air heat exchanger	yes
ECOTWIN		High-performance class			At extracted-air humidity > 45 %, a frost-	
		Optional: with integrated recirculated-	air louver		protection control system is required.	
		Optional: ECOPLAT / ECOTWIN with su	urface		Cooling recuperation	yes
		finish for corrosive environments			Moisture recovery	no

	Condensation rotor with moisture exchange			
	in case of condensation		Frosting danger in extracted-air	no
	Optional: epoxy-coated storage mass		Cooling recuperation	yes
	in case of corrosive environment		Moisture recovery	yes
	Enthalpy rotor with enhanced moisture exchange,			
	especially in case of condensation		Optional: 2 parallel rotors (ECOROT-DUO) for	
	Sorption rotor for high transmission of latent		configuration of units one behind the other	
	throughout the entire year	•	Control device for continuously variable speed adjustme	ent

Humidifiers

Spray humidifier (air scrubber) Maximum efficiency: approx. 88 %, 92 %, or 95 % (3 model lengths)

Picture: with

Area of application: humidification with fresh or recirculated water, by spray mist from high-performance aerosol nozzles Incoming water feed from user's own network via an installed float valve h/x plot for 30 °C/5 % TL1 -12 °C/90 % Operation with completely demineralized (distilled) water is possible Enclosure made of glass fiber-reinforced plastic (GRP) Nozzle block with threaded nozzle-pipe distributors 20 High-performance aerosol nozzles, self-cleaning and non-clogging Block pump with 3-phase AC motor 14 °C/78 % optional accessories • Air rectifier and PPTV droplet separator; temperature durability up to 130°C

Sound-absorber unit Sound-absorption splitters with upper material made of glass-fiber fabric or fleece made of filament glass yarn										
	Sound-attenuation at	lengths (mm) of	600	920	1200	1520	1720	2000	2320	
	• 63 Hz	dB	5	6	7	8	9	9	10	
	• 125 Hz	dB	10	13	17	21	24	28	31	
	• 250 Hz	dB	14	20	27	33	39	45	50	
	• 500 Hz	dB	17	24	32	40	48	50	50	
	• 1000 Hz	dB	17	25	33	41	49	50	50	
	• 2000 Hz	dB	14	20	26	32	38	43	49	
	• 4000 Hz	dB	9	13	16	20	23	27	30	
	• 8000 Hz	dB	8	11	13	16	19	21	24	

Empty units / air-inlet units / maintenance units / service units / multi-functional units With or without louver flaps Access as desired: with or without access doors or service cassettes

Lengths of the units in modular grid, as per selection or according to minimum requirements

• With louver flaps installed on the inside or outside

- Door hinge
 - With clamping frame for sensors or thermostats
 - With baffle-plate diffuser downstream of the fan units

Lockable access doors; available with crank handles or T-handles

Louver flaps for outdoor air, recirculated air, extracted air, exhaust air, mixed air With plastic gears for counter-rotating operation of the louver blades

	 Louvers/ sealing lips in EPDM quality	Material	Lea	kage as per DIN EN 1751	Class
	Without sealing lips	Galvanized sheet st	teel	60 m³/h / m² / 100 Pa	> 1
• •	Without sealing lips	Stainless steel 1.43	801	60 m³/h / m² / 100 Pa	> 1
	With sealing lips	Aluminum		20 m³/h / m² / 100 Pa	> 2
	With sealing lips, airtight as per DIN 1946, Part 4	Galvanized sheet st	teel	10 m³/h / m² / 100 Pa	> 3
	With sealing lips, airtight as per DIN 1946, Part 4	Aluminum		10 m³/h / m² / 100 Pa	> 3
	With sealing lips, airtight as per DIN 1946, Part 4	Stainless steel, 1.43	301	10 m³/h / m² / 100 Pa	> 3
	Special louver flaps as per DIN EN 1751, Class 4	Upon request		5 m³/h / m² / 100 Pa	4

Duct connectors for supply air, outside air, extracted air, exhaust air

Material properties of the 4-hole profile sections as selected: galvanized sheet steel, galvanized and coated sheet steel, stainless steel

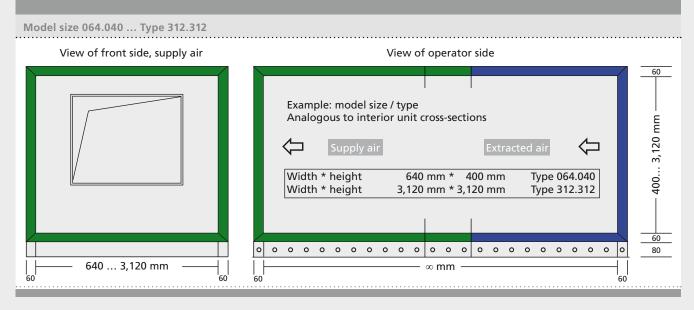
- Flexible (sailcloth) connections, for sound absorption (PVC fittings)
- Hygiene-connection fittings, rigid, for airborne and structure-borne noise attenuation
- Both versions are without fixed metal links between the equipment units and the duct connections

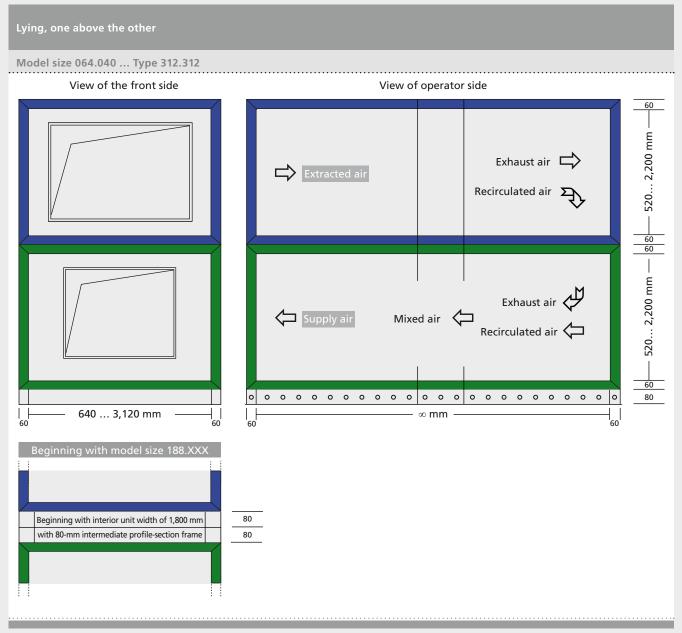
Unit sizes / airflow / fans

GEA CAIRplus SX

Model sizes	Free unit cross-section width x height		orox. İow 2.5 m/s	General unit properties	Fans V-belt drive	Fans direct drive
Туре	mm x mm	m³/h	m³/h	0 3	0 3	1 3
064 • 040	640 x 400	1,000	2,300	13	0 3	1 3
096 • 040	960 x 400	1,400	3,500	0 0	0 3	0 3
128 • 040	1280 x 400	1,800	4,600	0 3	0 8	
 Lying, one behind 	the other 2 Lying,	, one over t	he other	3 Lying, next to each C→ C→	other 4 Standir	ng, one above the other
		۲ ب		ν— — — — — — — — — — — — — — — — — — —		Ц
Model sizes	Unit cross-section width x height	Approx 1.0 m/s	. airflow 2.5 m/s	General unit properties	Fans V-belt drive	Fans B5 direct drive
Туре	mm x mm	m ³ /h	2.5 m ³ /h	1234	1234	123
		• • • • • • • • • • • • • • • • • •				
064 • 052	640 x 520	1,200	3,000			000
064 • 064	640 x 640	1,500	3,700			
096 • 052	960 x 520	1,800	4,500			
064 • 096	640 x 960	2,200	5,500	003	000	123
096 • 064	960 x 640	2,200	5,500		0030	123
128 • 064	1,280 x 640	3,000	7,500		000	12
096 • 096	960 x 960	3,300	8,200		0034	000
096 • 128	960 x 1,280	4,500	11,200	0 3	0 0	0 3
128 • 096	1,280 x 960	4,500	11,200	1234	0234	000
160 • 096	1,600 x 960	5,500	13,700	023	003	123
128 • 128	1,280 x 1,280	6,000	15,000	1234	0234	123
188 • 096	1,880 x 960	6,500	16,200	00	00	12
160 • 128	1,600 x 1,280	7,500	18,700	023	023	000
188 • 128	1,880 x 1,280	8,500	21,200	003	000	000
160 • 160	1,600 x 1,600	9,000	22,500	123	123	123
220 • 128	2,200 x 1,280	10,000	25,000	00	00	12
188 • 160	1,880 x 1,600	11,000	27,500	123	000	123
252 • 128	2,520 x 1,280	11,500	28,700	00	00	00
220 • 160	2,200 x 1,600	12,500	31,200	003	000	023
188 • 188	1,880 x 1,880	12,500	31,200	000	000	123
220 • 188	2,200 x 1,880	15,000	37,500	003	000	123
280 • 160	2,800 x 1,600	16,000	40,000	00	00	12
252 • 188	2,520 x 1,880	17,000	42,500		123	
220 • 220	2,200 x 2,200	17,500	43,700	123	000	
280 • 188	2,800 x 1,880	19,000	47,500	00	00	12
220 • 252	2,200 x 2,520	20,000	50,000	0 3	0 8	1 3
312 • 188	3,120 x 1,880	21,100	52,700	00	00	12
280 • 220	2,800 x 2,200	22,200	55,500	003	023	
252 • 252	2,520 x 2,520	23,000	57,500		0 3	1 3
312 • 220	3,120 x 2,200	24,500	61,300	00	00	00
280 • 252	2,800 x 2,520	25,500	63,700		0 3	1 3
280 • 280	2,800 x 2,800	28,000	70,000		0 3	
312 • 252	3,120 x 2,520	28,000	70,000		0 3	1 3
312 • 280	3,120 x 2,800	31,500	78,700		0 3	
312 • 312	3,120 x 3,120	35,000	87,500	1 3	1 3	

GEA CAIR SX

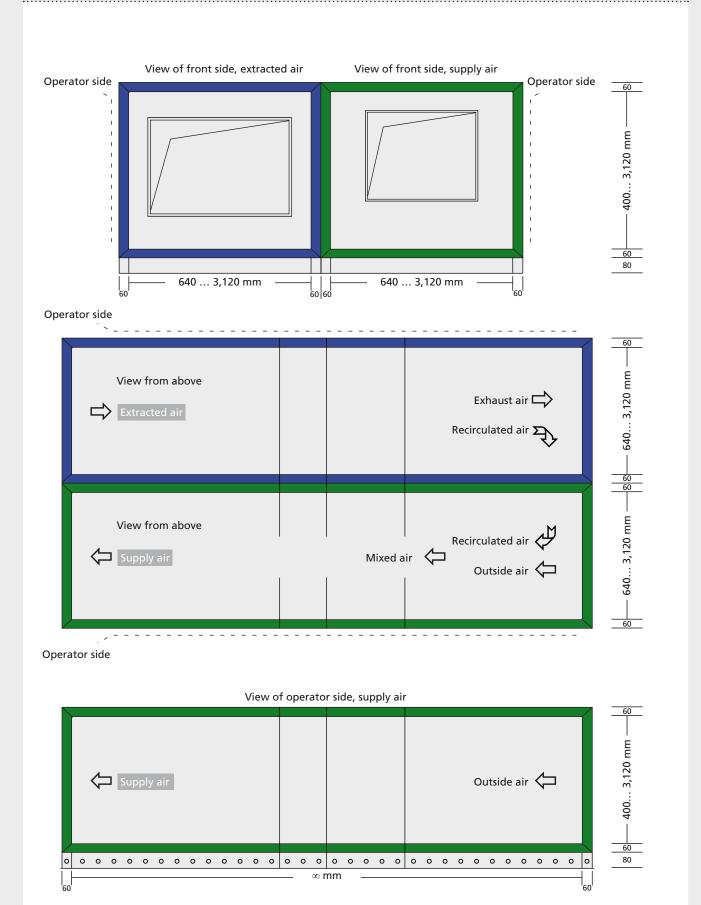

Model sizes	ECOFLOW	ECOSTAT	ECOPLAT	ECOTWIN	ECOROT	ECOROT DUO
	03	3	3	_	-	_
064 • 040	1 3	3	3			
096 • 040	0 8	3	3	_	_	_
128 • 040	0 3	3	3			
● Lying, one behir ◆ ◆	nd the other 🛛 😢	Lying, one over the	other 3 Lyin	ng, next to each other	4 Standing	, one above the other
		¢				2
					_	
Model sizes	ECOFLOW	ECOSTAT	ECOPLAT	ECOPLAT TWIN	ECOROT	ECOROT DUO
	1234	23	23	2	23	0
064 • 052	1234	23	23	2	23	
064 • 064	1234	23	23	2	23	_
096 • 052	1234	23	23	2	23	
064 • 096	123	23	23	2	23	
096 • 064	1234	23	23	2	23	
128 • 064	124	2	2	2	2	
096 • 096	1234	23	23	2	23	-
096 • 128	1 3	3	3		3	
128 • 096	1234	23	23	2	23	
160 • 096	123	23	23	2	23	
128 • 128	1234	23	23	2	23	
188 • 096	12	2	2	2	2	-
160 • 128	123	23	23	2	23	
188 • 128	123	2	2	2	23	
160 • 160	123	23	23	2	23	0
220 • 128	12	2	2	2	2	
188 • 160	123	2	2	2	23	0
252 • 128	12	2	2	2	2	
220 • 160	123	2	2	2	23	
188 • 188	123				23	0
220 • 188	123				23	0
280 • 160	02	2	2	2	2	
252 • 188	123				23	
220 • 220	123				23	0
280 • 188	00				2	
220 • 252	0 3				3	1
312 • 188	00	-	_	_	2	
280 • 220	003					
252 • 252	0 3					0
312 • 220	00				2	0
280 • 252	00					0
280 • 280	00					1
312 • 252	00	-	_	_	-	0
312 • 280						0
312 • 312	1 3					1


Unit sizes / humidifiers

GEA CAIRplus SX

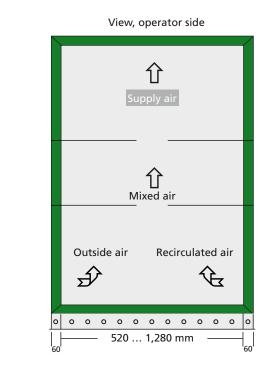
Model sizes	Humid empty ch		Elec. s humid		Saturateo humidifi outside stear	ers for	Evapo ks humid		Spray hu (air scrւ	
Туре	0	3	-		-		-		-	
064 • 040	1	3	•••••						••••••	
096 • 040	0	3	-		-		-		-	
128 • 040	0	3								
Lying, one behind	I the other	2 Lying	, one over th ⇔ ⇔	e other	3 Lying,	next to ea	ch other ⇒			
Model sizes	Humid empty ch		Elec. s humid		Saturateo humidifi outside stear	ers for	Evapo ks humid		Spray hui (air scru	
Туре	12	3	10	3	12	3	12	3	0	3
064 • 052	12	3	12	3	12	3	12	3	1	3
064 • 064	12	3	12	3	12	3	12	3	0	3
096 • 052	12	3	12	3	12	3	12	3	0	3
064 • 096	12	3	12	3	12	3	12	3	0	3
096 • 064	12	3	12	3	12	3	12	3	0	3
128 • 064	12)	12		12		12		0	
096 • 096	12	3	10	3	12	3	12	3	0	3
096 • 128	1	3	0	3	1	3	0	3	0	3
128 • 096	12	3	12	3	12	3	12	3	0	3
160 • 096	12	3	102	3	12	3	12	3	0	3
128 • 128	12	3	12	3	12	3	12	3	0	3
188 • 096	12)	10		12		12		0	
160 • 128	12	3	12	3	12	3	12	3	0	3
188 • 128	12	3	12	3	12	3	12	3	0	3
160 • 160	12	3	12	3	12	3	12	3	0	3
220 • 128	12)	12		12		12		0	
188 • 160	12	3	12	3	12	3	12	3	0	3
252 • 128	12)	10		12		12		0	
220 • 160	12	3	10	3	12	3	12	3	0	3
188 • 188	12	3	12	3	12	3	12	3	0	3
220 • 188	12		12	3	12	3	12	3	0	3
280 • 160	12)	12		12		12		0	
252 • 188	12		12	3	12	3	12	3	0	3
220 • 220	02	-	0 2		0 2		0 2		0	3
280 • 188	12		12		12		12		0	
220 • 252	0	3	1	3	0	3	0	3	0	3
312 • 188	12		12		12	_	12		0	_
280 • 220	12		12		12		12		0	3
252 • 252	0	3	0	3	0	3	0	3	0	3
312 • 220	12		12		12		12		0	
280 • 252	0	3	0	3	0	3	0	3	0	3
280 • 280	0	3	1	3	1	3	0	3	0	3
312 • 252	0	3	0	3	0	3	0	3	0	3
312 • 280	1	3	1	3	1	3	1	3	0	3
312 • 312	0	3	1	3	0	3	1	3	0	3

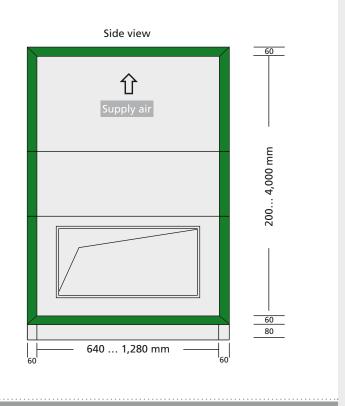
Lying, one behind the other

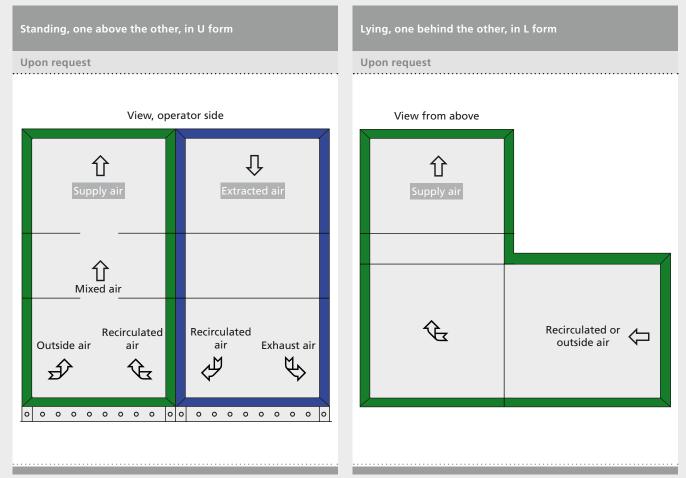


Unit configurations

Lying, next to each other

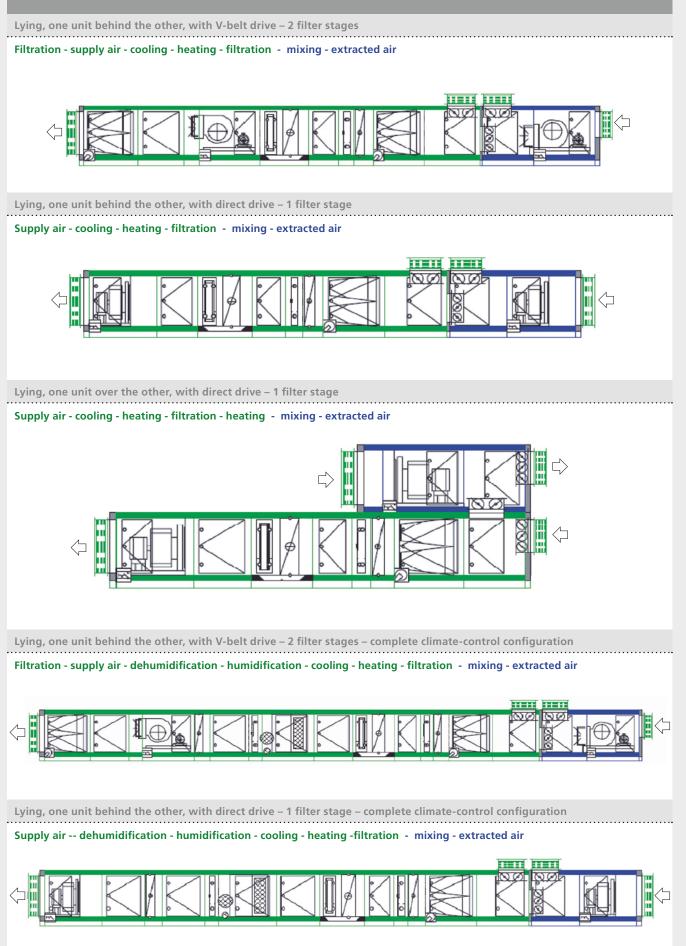

Model size 064.040 ... Type 312.312




GEA CAIRplus SX

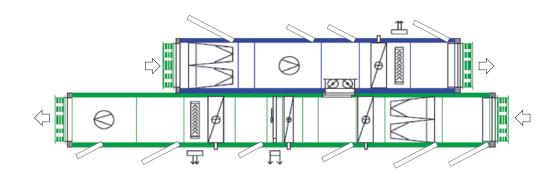
Standing, one above the other

Model size 064.052 ... Type 128.128

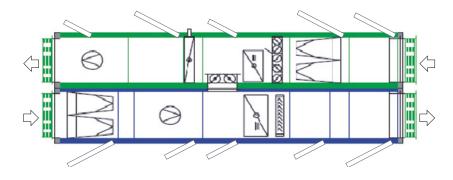



Unit configurations

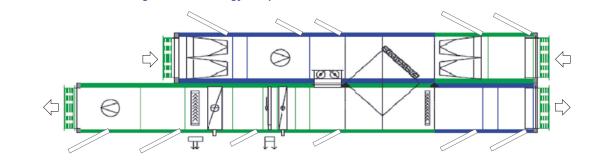
GEA CAIRplus SX

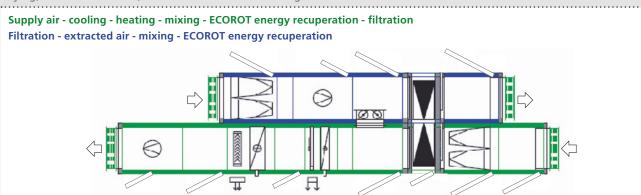

Examples of unit configurations – without energy recuperation

Examples of unit configurations – with energy recuperation



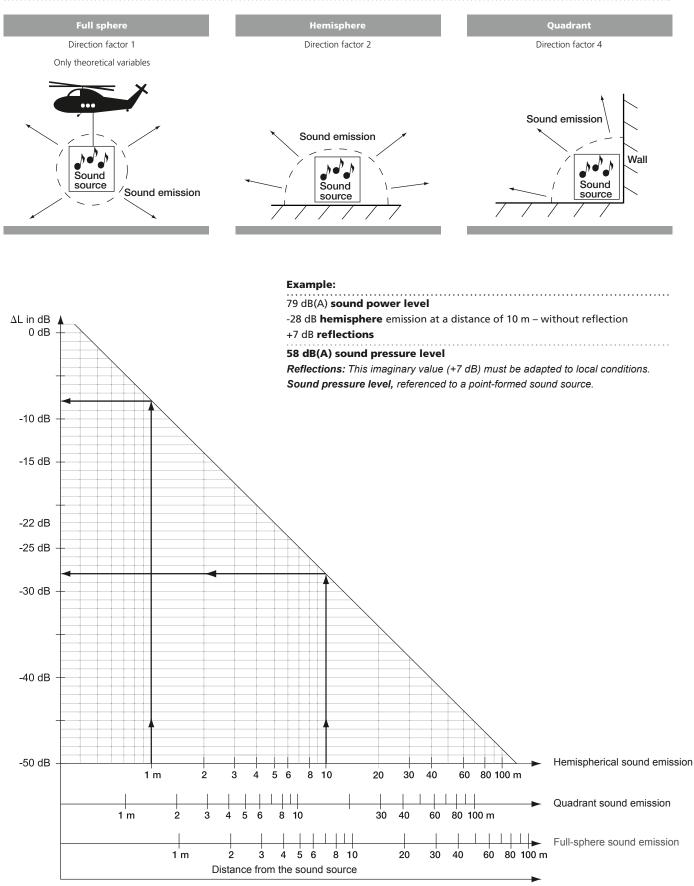
Lying, one unit next to another, with direct drive – 1 filter stage – ECOSTAT


Supply air - heating - mixing - ECOSTAT energy recuperation - filtration



Lying, next to each other, with direct drive – 1 filter stage – ECOPLAT

Supply air - cooling - heating - mixing - ECOPLAT energy recuperation - filtration Filtration - extracted air - mixing - ECOPLAT energy recuperation


Lying, next to each other, with direct drive – 1 filter stage – ECOROT

PR-2009-0038-GB • Subject to modification • K4-10/2012

Conversion of sound power to sound pressure

Acoustics

79 dB(A) sound power level: measurable, but not perceptible (like the heat output of a radiator).
58 dB(A) sound pressure level: measurable and perceptible (like the increase in room temperature by a radiator).

We live our values.

Excellence • Passion • Integrity • Responsibility • GEA-versity

GEA Group is a global engineering company with multi-billion euro sales and operations in more than 50 countries. Founded in 1881, the company is one of the largest providers of innovative equipment and process technology. GEA Group is listed in the STOXX® Europe 600 Index.